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Around the globe, the tumor is the leading cause of death. Early detection and 
prediction of a cancer type are important for a patient's wellbeing. Functional 
genomic data has recently been used in the effective and early detection of 
cancer. According to previous research, the use of microarray data in cancer 
prediction has evidenced two main problems as high dimensionality and limited 
sample size. Several researchers have used numerous statistical and machine 
learning - based methods to classify cancer types but still, limitations are there 
which makes cancer classification a difficult job. Deep Learning (DL) and 
Convolutional Neural Network (CNN) have proven effective in analyzing a wide 
range of unstructured data including gene expression data.  In the proposed 
method gene expression data of five types of cancer is collected from The Cancer 
Genome Atlas (TCGA).  Prominent features are selected using a hybrid Particle 
Swarm Optimization (PSO) and Random Forest (RF) algorithm followed by the use 
of Principal Component Analysis (PCA) for dimensionality reduction. Finally, for 
classification blend of Convolutional Neural Network (CNN) and Bi - Directional 
Long Short Term Memory (Bi - LSTM) is used to predict the target type of cancer. 
We demonstrate that accuracy of the proposed method is 96.89 %. As compared 
to existing work, our method outperformed and showed better results. 
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Cancer is the second most common cause of mortality 
worldwide, accounting for roughly one of every six 
fatalities. To reduce the effect of cancer on human health, 
significant research efforts have been dedicated to cancer 
detection and treatment techniques.1 the goal of cancer 
detection is to classify tumor categories and establish 
indicators for each malignancy so that we can develop a 
learning technique that can automatically recognize certain 
metastatic tumors or diagnose cancer in an early phase. 
Cancer prediction focuses on cancer susceptibility, 
recurrence, and prognosis by offering precise cancer 
treatment depending on unique genetic biomarkers.2 The 
last decade has witnessed abundant use of DL algorithms, 
which has the exciting potential to uncover complicated 
interactions buried in large - scale information including 
bioinformatics.3 Although it is often considered 
synonymous with computational biology, bioinformatics is 
a discipline of science that is related to but distinct from 
the biological computation.4 Bioinformatics uses computing 
to better understand biology, while biological computation 
uses bioengineering and biology to construct biological 
computers.5 The use of DL algorithms has grown rapidly in 
bioinformatics, demonstrating exciting abilities to mine the 
intricate relationships concealed in extensive biological and 
biomedical evidence. DL is a class of multi - layer Neural 
Network models (NN) that progressively succeeds at 
learning from the enormous amount of data.6 It also 
comprises a training phase wherein the network 
characteristics are predicted from a training dataset and a 
testing phase in which the learned network is used to 
estimate subsequent outputs.7 The development of the DL 
model for improved accuracy and interpretability for cancer 
type prediction is now made possible by the accumulation 
of whole transcriptomic profiling of tumor samples.8 Cancer 
is caused by variations or changes in gene regulators that 
regulate cell division and development, resulting in highly 
expressed genes.9 In such cases, a group of genes known 
as oncogenes plays an important role in the transformation 
of normal cells into cancerous cells.10 Somatic mutations, 
Copy Numbers (CNs), profiles, and various epigenetic 
changes are distinct in each kind of tumor.11 As a 
consequence, cell differentiation, environmental factors, 
and genetic inheritance by parents may interrupt Gene 
Expression (GE). Changes in GE can affect the 
development of proteins, which can affect normal cell 
behavior.12 The damaged cells begin to reproduce at a 
faster rate than normal, eventually forming a tumor in the 
affected region. Such tumors may sometimes develop into 
cancer.13 This is one of the reasons why cancer cases are 
steadily growing year after year, eventually becoming the 

world's second leading cause of death.14 Despite its 
importance in directing patient care, histologic - based 
cancer diagnosis remains difficult in many patients, 
especially in those who first present with metastatic, poorly 
differentiated neoplasms, where unclear or inaccurate 
classification may have a negative impact on treatment 
options and outcomes.15 Tumors are comprised of an array 
of cancer cells of varying properties and anticancer drug 
susceptibilities. Tumor heterogeneity also made it  

 

impossible to match patients with the right drug at the 
right time. Furthermore, the wide range of health - related 
characteristics described by non - comics data, such as 
clinical and epidemiological variables, may account for 
some of genomic data's low predictive ability.16 As a 
consequence, it's important to combine Omics and non - 
omics (On) data in a single model. This opens the door to 
gain a better understanding of biological mechanisms of 
health and illness.17 This endeavor, without a doubt, poses 
a host of challenges in terms of data creation, capture, 
curation, dissemination, analysis, emulation, and data 
security and storage.18 Identifying candidate genes that 
could explain major reaction variations is also important.19 
The patient’s top priority is to get a prompt diagnosis of 
essential illnesses, such as tumors, with the least amount 
of error possible.20 Furthermore, a genomics profile 
involves a large amount of multidimensional data that must 
be analyzed using the required statistical approach to 
obtain precise information.21  Because of biomedical 
analysis on genome data, we can analyze cancer omics 
data in the form of raw sequencing data, Single  
Nucleotide Polymorphism (SNP) data, Copy Number 
Variation (CNV) data, DNA methylation data, and miRNA 
gene expression data.23 A massive amount of gene 
expression data is publicly available in databases like The 
Cancer Genome Atlas (TCGA), Catalogue of Somatic 
Mutations (COSMIC), Genebank, University of California 
Irvine (UCI), National Center for Biotechnology Information 
(NCBI), etc.24 The sensitivity of a clinical drug in terms of 
predicting patient response to various diseases is a major 
concern. There is still scope to deal with algorithmic 
inequity, outcome noise, process bias, and model 
variance.25 DL algorithms, on the other hand, have set new 
benchmarks in image processing, natural language 
processing, voice recognition, and, most recently, 
bioinformatics.26 DL is a theoretically useful method for 
large - scale and deep Artificial Neural networks that have 
received a lot of attention in recent years.27 DL models can 
reliably estimate the complex nonlinear relationship 
between environmental parameters, thanks to multi - layer 
learning, which helps to capture the possible interaction 
between environmental variables for remote sensing 
retrieval, fusion, and downscaling.28 To solve the current 
challenges and difficulties of cancer prediction, a new 
approach using DL is insistently needed to make cancer 
prediction easier and more reliable.29 In this context, this 
research work proposes a novel approach to predict cancer 
type using a hybrid algorithm in the feature selection and 
classification phase. We have used the miRNA PAN cancer 
dataset which addresses five types of cancers consisting of 
20,531 gene columns and 801 patient records as rows.30 
Attributes of each sample are RNA - Seq gene expression 
levels measured by the Illumine -HiSeq platform. As an 

extension to the preliminary study carried out in section - 
II, this research work has the following contributions: 

 Our system can investigate five types of cancers 
(Breast Carcinoma – BRCA, Colon Adenocarcinoma 
(COAD), Kidney Renal Clear-cell carcinoma (KIRC), 
Lung Adenocarcinoma (LUAD), Prostate 
Adenocarcinoma (PRAD). 

 To select prominent features, we have introduced a 
novel feature selection algorithm that combines 
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Particle Swarm Optimization (PSO) with Random 
Forest (RF) algorithm. 

 For classification blend of Recurrent Neural Network 

(RNN) and Long Short Term Memory (LSTM) algorithm 
is used to attain high accuracy.  

 The precision achieved by our model is high as 
compared to existing systems and is of key 
importance in highlighting the effectiveness of our 
model.  

 

This paper is divided into five main sections. The previous 
section described the theoretical background of cancer and 
current trends in cancer prediction with pros and cons. 
Section - 2 reviews related work on cancer prediction. 
Section - 3 emphasizes the architecture of the proposed 
system including experimental results obtained for novel 
hybrid algorithms in respective phases. Section - 4 gives 
insights on validation and performance comparison of our 
system with baseline algorithms followed by concluding 
remark in section - 5 and future scope in section - 6. 

 

 

 

The prediction accuracy of a Weighted - Particle Swarm 
Optimization (WPSO) using a Smooth Support Vector 
Machine (SSVM) was 98.42 percent. The suggested system 
in used the voting classifier technique to combine SVM, 
Naive Bayes, and J 48 to obtain an accuracy of 97.13 
percent, which is better than each of the separate 
classifiers. For NB, RepTree, and K - NNs, the method 
established in achieved 70 percent, 76.3 percent, and 66.3 
percent accuracy, respectively. They discovered four 
characteristics that are best for this classification 
assignment after implementing PSO. The accuracy values 
for NB, RepTree and K - NNs with PSO were 81.3 percent, 
80 percent, and 75 percent, respectively. According to the 
findings in, 91.7 percent, 91.7 percent, and 94.11 percent 
accuracy were attained for BBN, BAN, and TAN, 
respectively, using gradient boosting. The acquired 
findings in showed that the Naive Bayes algorithm worked 
well with a 97.36 percent accuracy, the RBF network 
performed well with a 96.77 percent accuracy, and the J 
48 came in third with a 93.41 percent accuracy uses data 
from TCGA to compile Copy Number Variations (CNVs) for 
8000 cancer patients with 14 distinct cancer types. Then, 
using 578 oncogenes and 20,308 protein - coding genes, 
two alternative sparse representations of Copy Number 
Variations (CNVs), encompassing genomic deletions and 
duplication across samples, are created. The researchers 
then used both representations to train Convolutional - 
Long Short Term Memory (Conv - LSTM) and Convolutional 
Auto Encoder (CAE) networks and produce snapshot 
models. To distinguish various five types of cancer, based 
on tumor Ribonucleic acid - sequence (RNA - Seq) data, 
proposes a novel integrated DL approach based on Binary 

Particle Swarm Optimization (PSO) with a Decision Tree 
(BPSO - DT) and CNN. The architecture of two main 
convolutional layers for featured extraction and two fully 
connected layers is introduced to classify the 5 different 
types of cancer according to the availability of images on 
the dataset. Used GE profiles to classify cancer have 
revealed new information about the origins of cancer and 
how to cure it.37 addresses 21 types of cancer. Here, 300 
most important genes expressed in each cancer were used 

to train 7,398 cancer samples and 640 normal samples 
from 21 tumors and normal tissues in the DL.38 collected 
microarray gene expression data for 238 samples from 
Colo Rectal Cancer (CRC) and regular samples from the 
Gene Expression Omnibus (GEO) database, which contains 
13,487 genes. On 173 samples, Weighted Gene Co - 
Expression Network Analysis (WGCNA) yielded 12 gene 
modules. For the classifier, the authors have used Variation 
Auto Encoder (VAE) for 1159 genes.39 Incorporated distinct 
molecular modifications and inferred features such as 
mutational signatures, a machine learning method was 
developed to predict tumor type from targeted panel DNA 
sequence data collected at the point of treatment. This 
algorithm was trained on 7791 tumors from a prospectively 
sequenced population of patients with advanced cancer, 
spanning 22 cancer types.39 Targeted tumor sequencing 
estimated likely tissues of origin in 95 of 141 patients (67.4 
%) with cancers of uncertain primary location. 

 

 

 

 

Variations or modifications in gene regulators that control 
cell division and growth result in the highly expressed 
gene, which causes cancer. Generally, building a stable 
history mutation model is challenging due to the 
heterogeneity of tumors. So, there is a crucial need to 
introduce a novel solution that can overcome the 
complexities of the gene expression data and enhance the 
accuracy of prediction.40 this section demonstrates the 
architecture of the proposed system. Figure 1 shows the 
architecture of the proposed system which is carried out in 
five phases: 

 

 Data collection  

 Feature extraction (PSO + RF) 

 Dimensional Reduction using PCA 

 Classification (RNN + LSTM) 

 Validation and performance comparison 

 

 
 

Details of Each Phase are Presented below 

 

Data collection: Publicly accessible mi - RNA TCGA 
PANCAN dataset is used in this work where attributes of 
each sample are RNA - Seq gene expression levels 

LITERATURE REVIEW 

CANCER PREDICTION SYSTEM 
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measured by the Illumina HiSeq platform. It consists of 
801 rows and 20531 columns which addresses five types of 
cancer profiles as, BRCA - Breast Carcinoma, COAD - Colon 
Adenocarcinoma, KIRC - Kidney Renal Clear –
 Cell Carcinoma, LUAD - Lung Adenocarcinoma, PRAD - 
Prostate Adenocarcinoma (Table 1). 

 

Cancer class Count 

BRCA 300 

COAD 78 

KIRC 146 

LUAD 141 

PRAD 136 

Table 1. Frequency for Each Cancer Type. 

 

The pie chart below shows the class frequency for each 

type of cancer in the dataset. It is also observed that BRCA 
has the highest number of samples (Figure 2). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed method selected 12556 genes out of 20531 
genes based on a hybrid feature selection algorithm. After 
applying hybrid RF and PSO these features are passed to 
the PCA for capturing the variance and make the data 
linearly separable within 500 PCA components. 

 

Dimensionality Reduction using Principal 
Component Analysis (PCA): 

PCA is used to find the eigenvectors of a covariance matrix 
with the highest eigenvalues and then the same is used to 
protect the data into a new subspace of equal or fewer 
dimensions. Eigenvector and Eigenvalues capture more 
variance and correlation. It drops the variables with the 
low variance within a compressed dimension of 
components. This is a transformation that entails linear 
algebra to compress a dataset. The feature extracted by 
PCA generally has high variance and it will be linearly 
separable which makes our LSTM model fit with less 
complexity. 

 

Following is Pseudo code for PCA: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the below Figure 3 scree plot, we can interpret that 
there are 500 optimal components that capture most of 
the variance. Genes get compressed within 500 features 
components of PCA. 

 

 

 X - > input samples 

 Components -> 500 

  Compute dot product matrix: XT X = PN  

 i=1(xi − µ) T (xi − µ)  

 Eigenanalysis: XT X = VΛVT   

 Compute eigenvectors: U = XVΛ− 1/2  

 Keep feature vector specific number of first 

components: Ud = [u1, u2 . . , u500]  

 Return Computed features: Y = Ud T X 

 

For each particle 

       Initialize particle 

End 
 

Do 

    For each particle 

        Calculate fitness value 

                If the fitness value is better than the best fitness 

value (pBest) in history 

                     set current value as the new pBest 

End 
 

Choose the particle with the best fitness value of all the 

particles as the gBest 

    For each particle 

          Calculate particle velocity according to equation (a) 

          Update particle position according to equation (b) 

    End 
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Bi - directional LSTM 

RNN - LSTM model is trained for the RNA gene sequence 
dataset. RNN model is trained in a sequence that is by 
looking at the previous state it predicts the current state. 
For example, if we take the sentence “Ram is playing 
Kabaddi and his knee got injured”. From this sentence, we 
can see each word is dependent on the previous one, so if 
we use the RNN model on the half of the sentence like 
“Ron is playing soccer and” the model will predict the next 
word based on the all previous words and predict “his” if it 
is girl name it will predict as “her”. Likewise, RNA gene 
sequence is also trained using the LSTM - RNN model 
where it learns some patterns from the previous genes and 
predicts the current gene. LSTM is the same as RNN but 
RNN forgets the long back previous state if the sequence is 
long, for example, paragraph, gene sequence. To tackle 
this problem we used the LSTM model to train the long 
gene sequence RNA model due to its memory cell tries to 
store the long back previous information in memory. The 
processed gene sequence is passed to the LSTM model to 
do sequence prediction Example first inputs to the model 
will be Model Sample 1 inputs: gene 1, gene 2 …….gene N 
Model sample 1 target: “BRCA” The LSTM models first 
calculate linear transformation Wx + C and apply activation 
function for first gene 1. Further, it computes the loss or 
error of the model by comparing model output and actual 
output we already know. It tries to reduce the loss by 
updating the weights W of the input gene X where c is the 
bias term. Finally, that output of gene 1 is carried forward 
to the next gene 2 by adding the output to the current 
gene which is going to predict current outputs by looking 
into the previous gene by applying linear transformation 
and activation function. Likewise, it repeats the same 
procedure for all cancer types and finally, it learns the 
exact gene pattern for each cancer type (Figure 4). 

 

 
 

We used a Bi - directional LSTM layer with one lag of 
period and the parameters are one input layer, one 

bidirectional LSTM hidden layer with 400 neurons, and an 
output layer. The following snapshot shows the sample 
output of the model training phase (Figure 5). 

 

 
 

 

 

After conducting trials, we evaluated the proposed model's 

efficiency using classification accuracy and the Confusion 
matrix. The accuracy of the classifier is measured by how 
accurately it predicted the cancer type. The confusion 
matrix is a common metric for evaluating the efficiency of 
a classification model. It calculates true accuracy against a 
classifier. We have used two more evaluation criteria for 
the best outcomes. Time and number of iterations elapsed. 
The number of loops refers to the number of rounds taken 
by the network to train and test data, while the elapsed 
time refers to the amount of time taken by the network to 
train and test data. 

 

Model Evaluation 

The model on the test dataset was evaluated and elapsed 
time was measured as shown below Table 2. 

 

Model Training time Testing time 

Bi-directional LSTM 2 Min 3 Sec 83 Milli sec 

         Table 2. Elapsed Timing. 

 

The proposed RNN-LSTM has taken a training time of 2 
min 3 sec and a testing time of just 83 milli sec. The 
following shows the confusion matrix obtained (Figure 6). 

 

         VALIDATION and PERFORMANCE 
COMPARISON 
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Performance Measurement 

Performance of the proposed system is evaluated using 
precision, recall and F1 measure, as indicated in the 
following Figure 7. 

 

 
 

A bar chart is plotted for the same as below Figure 8. 

 

 

 

We also plotted ROC for each type of cancer & the results 
are illustrated in (Figure 9). 

 

 
 

The proposed methodology achieved 96.89 % accuracy, 
5.32 % FP rate, 98.61 % precision, 96 % recall, 97.06 % 
f1. By the metrics, the novel solutions account to be the 
better method to predict cancer eliminating mentioned 
complexities in section - 1. 

 

Comparison Metrics 

We also compared the performance of our system with 
existing systems. Following table shows the comparative 
analysis (Table 3). 

 

Author Method Accuracy 

  Genome deep learning 

Sun (2019) 94.70 % 

  Logistic Regression 92.10 %, 

Shravya (2019) 
Support Vector Machine 
(SVM)  92.23 %, 

  K Nearest Neighbor (KNN) 92.78 % 

  XG Boost 

Maurizio Polano (2019)  87.80 % 

Chang S (2019) SVM 75 % 

Proposed Method Bi - LSTM 96.89 % 

Table 3. Comparative Analysis. 

 

Results of our proposed methodology are compared with 
existing methodologies proposed by previous researchers 
who used genome DL, Logistic Regression, Support Vector 
Machine (SVM), and K Nearest Neighbor (KNN), XG Boost, 
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SVM (Figure 10). 

 

 
 

Table 4 below shows comparative analysis concerning 
sensitivity and precision. 

 

Methods Sensitivity Precision 

Logistic Regression  91 % 95.31 % 

K Nearest  Neighbor  90.32 % 96.55 % 

SVM[44] 91.07 % 95.94 % 

Gaussian Method 96.80 % 70.09 % 

Random Forest 80 % 72.95 % 

ANN  59.93 % 84.58 % 

SVM - RBF 87.56 % 65.42 % 

SVC - W 95.56 % 89.47 % 

Proposed methodology 97.06 % 98.61 % 

Table 4. Comparison of Sensitivity and Precision. 

 

As compared to above works, our methodology 
outperformed and generated better results (Figure 11). 

 

 
 

 

 

The sensitivity and precision of the Logistic regression, K 
nearest neighbor, SVM, Gaussian, Random Forest, ANN, 
SVM + RBF is compared with our proposed method with 

97.06 % sensitivity and 98.61 % precision the proposed 
technique has been proven the best comparatively. The 
proposed method resulted in the highest precision with 
Performance metric shows that the proposed methodology 
outperformed in the evaluations and outcome as compared 
to existing systems for a cancer type prediction. 

 

 

 

 

In this paper, we propose a method to enhance cancer 
diagnosis and improve classification accuracy from gene 
expression data. Proposed hybrid of RF and PSO extract 
desirable features and optimizes parameters which are 
further passed to PCA to emphasize variation and extract 
the most significant patterns from a dataset. Furthermore, 
the Bi - LSTM algorithm learns from the extracted features 
and predicts the target type of cancer. Experimental results 
show 96.89 % accuracy and 98.61 % precision. Applying 
this method to gene expression data and comparing it with 

baseline algorithms our method not only shows that it can 
be used to enhance the accuracy but also shows that it can 
be scaled further to deal with different types of cancer 
genomic profiles. 

 

 

 

Though we achieved 96.89 % accuracy, we would like to 
address the following issues to extend this work as a part 
of future direction.  

 A generalized cancer prediction system covering all 
types of cancers can be built.  

 Omics and non - omics data can be integrated which 
will reveal few more clues to ease classification 
performance. Still, the scope is there to enhance the 
accuracy of the system. 
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