A RETROSPECTIVE STUDY RISK FACTOR ANALYSIS IN MDR TB CASES AMONG RURAL POPULATION OF THANJAVUR MEDICAL COLLEGE AND HOSPITAL, THANJAVUR, TAMILNADU

Shri Ram Ganesh R. T., A. Manimaran, K. Namasivayam, N. Uma, J. Jasmine

1Assistant Professor, Department of Internal Medicine, Thanjavur Medical College, Thanjavur Tamilnadu.
2Senior Resident, Department of Internal Medicine, Thanjavur Medical College, Thanjavur Tamilnadu.
3Professor, Department of Internal Medicine, Thanjavur Medical College, Thanjavur Tamilnadu.
4DICD Post Graduate, Department of Internal Medicine, Thanjavur Medical College, Thanjavur Tamilnadu.
5DICD Post Graduate, Department of Internal Medicine, Thanjavur Medical College, Thanjavur Tamilnadu.

ABSTRACT

BACKGROUND
Drug resistance in tuberculosis is one of the major problems worldwide. There is an estimated 99,000 annual incident cases of MDR-TB in India. MDR-TB poses therapeutic and treatment challenges with significantly higher rates of morbidity and mortality. It is easy to prevent multidrug resistant tuberculosis if the risk factors are known.

The aim of the study is to evaluate the risk factors in MDR TB cases among rural population of Thanjavur district, Tamilnadu, India.

MATERIALS AND METHODS
The medical record of patients with multidrug resistant tuberculosis diagnosed as per RNTCP DOTS PLUS guidelines admitted for pretreatment evaluation in DOTS PLUS centre, Thanjavur Medical College, were examined. These cases were diagnosed or registered during Jan-2015 to Dec-2015. All selected patients were categorized into four groups: Below 30 years, 31-40 years, 41-50 years, 51-60 years and above 60 years. The variables analysed include age, gender, site of the disease, personal history regarding alcoholism & smoking were recorded. Previous treatment history and default status were analysed. Each potential risk was evaluated using Univariate Conditional Logistic Regression Model / Chi-Square test.

RESULTS
Of the 96 cases studied, default majority were males (85.4%), predominant age groups 41-60 (51.1%). alcoholism (57.3%) were found to be the risk factors for drug resistance in tuberculosis. There is significant association between previous treatment and age group. Drug intolerance, default & relapse were more common in 41-60 age groups. Alcoholism plays a role in treatment failure and default.

CONCLUSION
Male gender, adult age groups (41-60), alcoholism, were the significant risk factors for MDR TB in our study and it showed statistical significance of p<0.05. On analysis of the risk factors, alcohol abuse was found to be the major behavioural risk factor for treatment default. Hence alcohol deaddiction could be included as an essential programme in DOTS plus strategy. Since people between age groups 41-60 were also found to be major defaulters, they should be educated about regular intake of ATT, drug toxicity, diet schedule and emergence of multidrug resistance and regular follow up. Drug intolerance symptoms like vomiting and giddiness need to be managed appropriately with due care.

KEYWORDS
Retrospective Observational Study.

HOW TO CITE THIS ARTICLE: Shri Ram Ganesh RT, Manimaran A, Namasivayam K, et al. A retrospective study risk factor analysis in MDR TB cases among rural population of Thanjavur Medical College and Hospital, Thanjavur, Tamilnadu. J. Evid. Based Med. Healthc. 2018; 5(13), 1211-1215. DOI: 10.18410/jebmh/2018/250

BACKGROUND
Globally in 2015 there was an estimated 480,000 new cases of MDR-TB and an additional 100,000 people have been found to be rifampicin resistant TB (RR-TB)
, thus bringing total of 580,000 cases of MDR TB. Of this MDR TB globally XDR TB constitutes 9.7 %.

The emergence and spread of MDR-TB is threatening to destabilize global TB control. WHO estimates 60% cases are in India, china, Brazil and Russia.

Based on the estimates reported in global TB report 2016, the burden of both TB and MDR TB is highest in India. India has the second highest burden of MDR-TB in the world next to China. Of the MDR TB cases in India 79,000 emerge from pulmonary-TB patients as per the current year status. The absence of surveillance network and lack of reliable prevalence studies make it difficult to evaluate the true extent of MDR-TB in India.
To detect drug resistance, Drug susceptibility testing (DST) is done. DST is done in all retreatment cases at diagnosis, any sputum smear positive person during follow up, cases at diagnosis, contacts of confirmed MDR-TB cases, and HIV associated TB. WHO recommends sputum examination by LED microscopy over conventional microscopy.

RNTCP is implementing DOTS PLUS facility in our country to control MDR-TB burden since October 2007. Previous treatment for TB is the strongest risk factor for the development of MDR-TB. One should analyse each and every risk factor for MDR TB to reduce the overall burden. Previous treatment history and default status were analysed. Treatment naïve patients are also at risk due to either spontaneous mutations or transmission of resistant strains.

Aims and Objectives
To evaluate the risk factors in MDR TB cases among rural population of Thanjavur district, Tamilnadu, India.

Tuberculosis (TB) and diabetes mellitus were individually one of the top ten cases of mortality all over the world. Drug resistance tuberculosis (DR TB) has challenged all the aspects of tuberculosis management, from diagnosis till prognosis.

MDR-TB (multi drug resistant tuberculosis) is defined as isolates of mycobacterium tuberculosis resistant to isoniazid and rifampicin with or without resistance to other antituberculosis drugs.

Risk factors
Primary Resistance - An inherent resistance of acid fast bacilli (AFB) to an agent may exist, which is called primary resistance.

Secondary Drug Resistance
If ATT mono therapy or the regimen is inappropriate, it leads to secondary drug resistance. This patient can spread resistant disease to contacts, that can develop primary drug resistant disease in them.

RESULTS
Of the 96 cases studied, among the defaulters, these are the following observations, males (85.4%), predominant age groups 41-60 (51.1%). alcoholism (57.3%), were found to be the major risk factors for drug resistance in tuberculosis. Drug intolerance, default & relapse were more common in 41-60 age groups. Alcoholism plays a role in treatment failure and default. Of the 96 cases defaulters constitutes 28, treatment failure - 54 and relapse – 14. Each potential risk had been evaluated by Univariate conditional logistic regression model / Chi-Square test.

<table>
<thead>
<tr>
<th>q14a- PREVIOUS TREATMENT (Reason for default)</th>
<th>NA</th>
<th>Alcoholic</th>
<th>Drug Adverse Effects</th>
<th>Native Treatment</th>
<th>Occupation</th>
<th>private Treatment</th>
<th>Total</th>
<th>Statistical Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 22) (100%) (n = 36) (100%) (n = 20) (100%) (n = 3)</td>
<td>(n = 11) (100%) (n = 4) (100%) (n = 96) (100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
<td>81.8%</td>
<td>36</td>
<td>100.0%</td>
<td>16</td>
<td>80.0%</td>
<td>3</td>
<td>100.0%</td>
</tr>
<tr>
<td>Female</td>
<td>4</td>
<td>18.2%</td>
<td>0</td>
<td>0.0%</td>
<td>4</td>
<td>20.0%</td>
<td>0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Table 1. Sex

In our study, Out of 96 cases, 82 were male, constituting 85.4% with significant P = value < 0.05.
In our study MDR TB was predominant in the age group 41-60 years (51.1%) \(P=\) value < 0.05 deemed significant.

Among the behavioural patterns, alcoholism contributed (57.3 %) as the major risk factor for MDR TB \(P=\) value was < 0.05 showed significant.

In our study smoking was not found to be a risk factor for MDR TB.
DISCUSSION

Sex
In our study, Out of 96 cases, 82 were male, constituting 85.4% with significant P = value less than 0.05. In Addis Ababa, a case control study. Male had higher incidence of MDR TB because of nonadherence to therapy. In a population based study conducted in republic of Georgia, previous TB treatment and female gender are important risk factors. An Ethiopia based study conducted in Amhara National Regional state, also showed female preponderance. An Ahmedabad MDR TB, RNTCP study showed 2/3 rd of the study population were males.

Age
In our study MDR TB was predominant in the age group 41-60 years (51.1%) P= value < 0.05 deemed significant. In a Mumbai based RNTCP study, risk of MDR seems to be higher among elderly>45 yrs. In a case control Bangladesh based MDR TB study, majority were aged between 18-45 years. An epidemiological study of MDR-TB under RNTCP of Ahmedabad city, showed MDR TB was common among 16-45 years aged males.

Alcohol Abuse
Among the behavioural patterns, alcoholism contributed (57.3 %) as the major risk factor for MDR TB P= value was <0.05 showed significant. An Egyptian study, showed cigarette smoking as the most frequent risk factor. Harrison's principles of Internal medicine stresses about, alcoholism as a risk factors & hence educating the alcoholic patients about drug induced hepatitis and to do monthly monitoring of amino transferases level. Based on RNTCP guidelines one should do base line LFT before starting ATT, provided there are no risk factor. If the patient has abnormal base line elevation of transaminases level and those with risk factors for DILI (Drug induce liver injury) should be monitored by repeat LFTs.

CONCLUSION
Of the 96 cases studied, reasons for default being majority were males.

Predominant age groups fall in 41-60 years. Alcoholism plays a role in treatment failure and default. All three showed statistical significance that is P value < 0.05.

MDR-TB poses therapeutic and treatment challenges with significantly higher rates of morbidity and mortality early detection and effective treatment of source of infection is crucial in reducing DR-TB transmission.

Unavailability of proper laboratory setup at the gross root level was the most probable reason for MDR-TB.

The major advantage of genexpert is that it allows for the rapid initiation of second line drugs while awaiting DST culture.

Having more than one PTB episode and non-adherence to first line ATT had a significant association with MDR-TB. Patients with ≥2 previous episodes of PTB had a risk for development of MDR-TB.

The commonest side effects of prescribed drugs are GI disorders (vomiting, nausea, gastritis).

Adverse effects of anti-TB medication were associated with MDR-TB among previously treated TB patients.

It is easy to prevent MDR TB if the risk factors are known. By doing this study we would be able to identify risk factors for MDR-TB, cause for failure, default, and relapse and identify people at risk population there by able to find methods to prevent transmission and control of MDR-TB.

REFERENCES

